Electrostatic lens

An electrostatic lens is a device that assists in the transport of charged particles. For instance, it can guide electrons emitted from a sample to an electron analyzer, analogous to the way an optical lens assists in the transport of light in an optical instrument. The recent development of electron spectroscopy makes it possible to reveal the electronic structures of molecules. Although this is mainly accomplished by electron analysers, electrostatic lenses also play a significant role in the development of electron spectroscopy. An electrostatic lens can also be used to focus an ion beam, for example to make a microbeam for irradiating individual cells.

Since electron spectroscopy detects several physical phenomena from the electrons emitted from samples, it is necessary to transport the electrons to the electron analyser. Electrostatic lenses satisfy the general properties of lenses. Systems of electrostatic lenses can be designed in the same way as optical lenses, so electrostatic lenses easily magnify or converge the electron trajectories.

There are several types of electrostatic lenses:

As an example, the principle of the cylinder lenses is explained.

A cylinder lens consists of several cylinders whose sides are thin walls. Each cylinder lines up parallel to the optical axis into which electrons enter. There are small gaps put between the cylinders. When each cylinder has a different voltage, the gap between the cylinders works as a lens. The magnification is able to be changed by choosing different voltage combinations. Although the magnification of two cylinder lenses can be changed, the focal point is also changed by this operation. Three cylinder lenses achieve the change of the magnification while holding the object and image positions because there are two gaps that work as lenses. Although the voltages have to change depending on the electron kinetic energy, the voltage ratio is kept constant when the optical parameters are not changed.

While a charged particle is in an electric field force acts upon it. The faster the particle the smaller the accumulated impulse. For a collimated beam the focal length is given as the initial impulse divided by the accumulated (perpendicular) impulse by the lens. This makes the focal length of a single lens a function of the second order of the speed of the charged particle. Single lenses as known from photonics are not easily available for electrons.

Usually the dependency is given for the kinetic energy itself depending on the power of the velocity. So for an electrostatic lens the focal length varies with the second power of the kinetic energy, while for a magnetostatic lens the focal length varies proportional to the kinetic energy. And a combined quadrupole can be achromatic around a given energy.

If a distribution of particles with different kinetic energies is accelerated by a longitudinal electric field, the relative energy spread is reduced leading to less chromatic error for example in the electron microscope.

Multipoles beyond the quadrupole can correct for spherical aberration and in particle accelerators the dipole bending magnets are really composed of a large number of elements with different superpositions of multipoles.

See also

External links